
Sergei Petrunia <sergey@mariadb.com>
MariaDB Shenzhen Meetup

November 2017

[Some of]
New Query Optimizer features

in MariaDB 10.3

2

Plan
● MariaDB 10.2: Condition pushdown
● MariaDB 10.3: Condition pushdown through window

functions
● MariaDB 10.3: GROUP BY splitting

3

Condition pushdown

● Just condition pushdown in 10.2
● Pushdown through window functions in 10.3

4

Background – derived table merge
● “VIP customers and their big orders from October”

select *
from
 vip_customer,
 (select *
 from orders
 where order_date BETWEEN '2017-10-01' and '2017-10-31'
) as OCT_ORDERS
where
 OCT_ORDERS.amount > 1M and
 OCT_ORDERS.customer_id = customer.customer_id

5

Naive execution
select *
from
 vip_customer,
 (select *
 from orders
 where
 order_date BETWEEN '2017-10-01' and
 '2017-10-31'
) as OCT_ORDERS
where
 OCT_ORDERS.amount > 1M and
 OCT_ORDERS.customer_id =
 vip_customer.customer_id

orders

vip_customer

1 – compute
oct_orders

2- do join OCT_ORDERS

amount > 1M

6

Derived table merge
select *
from
 vip_customer,
 (select *
 from orders
 where
 order_date BETWEEN '2017-10-01' and
 '2017-10-31'
) as OCT_ORDERS
where
 OCT_ORDERS.amount > 1M and
 OCT_ORDERS.customer_id =
 vip_customer.customer_id

select *
from
 vip_customer,
 orders
where
 order_date BETWEEN '2017-10-01' and
 '2017-10-31'
 and
 orders.amount > 1M and
 orders.customer_id =
 vip_customer.customer_id

7

Execution after merge

vip_customer

Join

orders

select *
from
 vip_customer,
 orders
where
 order_date BETWEEN '2017-10-01' and
 '2017-10-31'
 and
 orders.amount > 1M and
 orders.customer_id =
 vip_customer.customer_id

Made in October

amount > 1M

● Allows the optimizer to do customer->orders or orders→customer

● Good for optimization

8

Another use case - grouping

● Can’t merge due to GROUP BY in the child.

 create view OCT_TOTALS as
 select
 customer_id,
 SUM(amount) as TOTAL_AMT
 from orders
 where
 order_date BETWEEN '2017-10-01' and '2017-10-31'
 group by
 customer_id

select * from OCT_TOTALS where customer_id=1

9

Execution is inefficient

 create view OCT_TOTALS as
 select
 customer_id,
 SUM(amount) as TOTAL_AMT
 from orders
 where
 order_date BETWEEN '2017-10-01' and '2017-10-31'
 group by
 customer_id

select * from OCT_TOTALS where customer_id=1

orders

1 – compute all totals

2- get customer=1

OCT_TOTALS

customer_id=1

Sum

10

Condition pushdown

select *
from OCT_TOTALS
where customer_id=1

 create view OCT_TOTALS as
 select
 customer_id,
 SUM(amount) as TOTAL_AMT
 from orders
 where
 order_date BETWEEN '2017-10-01' and '2017-10-31'
 group by
 customer_id

● Can push down conditions on GROUP
BY columns

● … to filter out rows that go into groups
we dont care about

11

Condition pushdown

select *
from OCT_TOTALS
where customer_id=1

orders

1 – find customer_id=1

OCT_TOTALS,
customer_id=1

customer_id=1

Sum

● Looking only at rows you’re interested in is much more efficient

 create view OCT_TOTALS as
 select
 customer_id,
 SUM(amount) as TOTAL_AMT
 from orders
 where
 order_date BETWEEN '2017-10-01' and '2017-10-31'
 group by
 customer_id

orders

12

MariaDB 10.3: Pushdown through Window Functions
● “Customer’s biggest orders”
create view top_three_orders as
select *
from
(
 select
 customer_id,
 amount,
 rank() over (partition by customer_id
 order by amount desc
) as order_rank
 from orders
) as ordered_orders
where order_rank<3

select * from top_three_orders where customer_id=1

+-------------+--------+------------+
| customer_id | amount | order_rank |
+-------------+--------+------------+
1	10000	1
1	9500	2
1	400	3
2	3200	1
2	1000	2
2	400	3
...

13

MariaDB 10.3: Pushdown through Window Functions

MariaDB 10.2, MySQL 8.0

● Compute
top_three_orders for all
customers

● select rows with
customer_id=1

select * from top_three_orders where customer_id=1

MariaDB 10.3 (and e.g. PostgreSQL)

● Only compute top_three_orders
for customer_id=1

– This can be much faster!

– Can make use of
index(customer_id)

14

“Split grouping for derived”

select *
from
 customer, OCT_TOTALS
where
 customer.customer_id=OCT_TOTALS.customer_id and
 customer.customer_name IN ('Customer 1', 'Customer 2')

 create view OCT_TOTALS as
 select
 customer_id,
 SUM(amount) as TOTAL_AMT
 from orders
 where
 order_date BETWEEN '2017-10-01' and '2017-10-31'
 group by
 customer_id

15

Execution, the old way

Sum

orders

select *
from
 customer, OCT_TOTALS
where
 customer.customer_id=
 OCT_TOTALS.customer_id and
 customer.customer_name IN ('Customer 1',
 'Customer 2')

 create view OCT_TOTALS as
 select
 customer_id,
 SUM(amount) as TOTAL_AMT
 from orders
 where
 order_date BETWEEN '2017-10-01' and '2017-10-31'
 group by
 customer_id

Customer 1

Customer 2

Customer 3

Customer 100

Customer 1
Customer 2
Customer 3

Customer 100

customer

Customer 1
Customer 2

OCT_TOTALS

● Inefficient, OCT_TOTALS
is computed for *all*
customers.

16

Split grouping execution

Sum

customer

Customer 2

Customer 2

Customer 1

Customer 100

orders

Customer 1

Customer 1

Customer 2

Sum

SumSum

● Can be used when doing join from
customer to orders

● Must have equalities for GROUP BY
columns:
OCT_TOTALS.customer_id=customer.customer_id

– This allows to select one group

● The underlying table (orders) must
have an index on the GROUP BY
column (customer_id)

– This allows to use ref access

17

Split grouping execution

● EXPLAIN shows “LATERAL DERIVED”

● @@optimizer_switch flag: split_grouping_derived (ON by default)

● Not fully cost-based choice atm (check query plan, use if possible and certainly advantageous)

select *
from
 customer, OCT_TOTALS
where
 customer.customer_id=
 OCT_TOTALS.customer_id and
 customer.customer_name IN ('Customer 1',
 'Customer 2')

 create view OCT_TOTALS as
 select
 customer_id,
 SUM(amount) as TOTAL_AMT
 from orders
 where
 order_date BETWEEN '2017-10-01' and '2017-10-31'
 group by
 customer_id

+------+-----------------+------------+------+---------------+-------------+---------+----------------------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+------+-----------------+------------+------+---------------+-------------+---------+----------------------+------+-------------+
1	PRIMARY	customer	ALL	PRIMARY	NULL	NULL	NULL	1000	
1	PRIMARY	<derived2>	ref	key0	key0	4	customer.customer_id	36	
2	LATERAL DERIVED	orders	ref	customer_id	customer_id	4	customer.customer_id	365	Using where
+------+-----------------+------------+------+---------------+-------------+---------+----------------------+------+-------------+

18

Summary
● MariaDB 10.2: Condition pushdown for derived tables optimization

– Push a condition into derived table

– Used when derived table cannot be merged

– Biggest effect is for subqueries with GROUP BY

● MariaDB 10.3: Condition Pushdown through Window functions

● MariaDB 10.3: Lateral derived optimization
– When doing a join, can’t do condition pushdown

– So, lateral derived is used. It allows to only examine GROUP BY groups that
match other tables. It needs index on grouped columns

– Work in progress (optimization process is very basic ATM)

19

Thanks!

Discussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

