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Let’s review recent history
● MariaDB 10.2
● MariaDB 10.3
● MySQL 8.0
● MariaDB 10.4
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Optimizer features in MariaDB 10.2

MariaDB 10.2  (Stable in May 2017)

● Window functions
● Common Table Expressions

– Non-recursive
– Recursive

● Condition pushdown into derived tables
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Optimizer features in MariaDB 10.3

MariaDB 10.3 (Stable in May 2018)

● Split grouping
● Condition pushdown through window functions
● Table value constructors

● Transform [NOT] IN predicate with big list into subquery
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Optimizer features in MySQL 8.0
MySQL 8.0 (Stable in May 2018, 5.7 was in Oct 2015)

● Histograms
● Common Table Expressions

– Recursive
– Non-recursive

● Invisible indexes

● Descending indexes

● More Oracle-style hints



6

Observations
● MySQL 8.0 re-implements a few big features

– Window functions

– Common Table Expressions
● Recursive
● Non-recursive

– Histograms

● MySQL still misses some of MariaDB features
● But it also has some extra features
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Let’s compare common features

MariaDB vs MySQL
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Non-recursive CTEs
● Another syntax for derived tables/VIEWs

– Optimizations for derived tables are applicable
● One exception: a CTE may be used multiple times
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Non-recursive CTEs optimizations
Merge

Condition 
pushdown

Lateral 
derived

CTE 
reuse

MariaDB 10.3 ✔ ✔ ✔(10.3) ✘

MS SQL Server ✔ ✔ ? ✘

PostgreSQL ✘ ✘ ✘ ✔

MySQL 8.0 ✔ ✘ ✘ ✔

 Merge and Condition Pushdown are the most important

 MariaDB supports them, like MS SQL.

 PostgreSQL’s approach is *weird*: “CTEs are optimization barriers”

 MySQL 8.0: “try merging, otherwise reuse”
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Recursive CTEs
● The standard specifies how RCTE should be computed

– Both MySQL and MariaDB follow it.

● MariaDB: also supports non-standard CTE computation

– set standard_compliant_cte=off …

– Allows the user to do more

● Performance/optimizations

– Not aware of practically important performance-sensitive cases.
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Window function optimizations
● Condition pushdown

● Reduce the number of sorting passes

● Streamed computation

● ORDER BY-like optimizations
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Window Functions optimizations
Reuse 

compatible 
sorts

Streamed 
computation

Condition
pushdown

ORDER BY 
LIMIT-like 

optimizations

MariaDB 10.3 ✔ ~✔ ✔ ✘

MS SQL Server ✔ ~✔ ✔ ✔

PostgreSQL ✔ ~✔ ✔ ✘

MySQL 8.0 ✔ ~✔ ✘ ✘

Everyone 
has this since 
it’s mandatory
for identical 

sorts

Essential,
otherwise 

O(N) computation 
becomes O(N^2) 

Very nice to 
have for 

analytic queries

Sometimes used for 
TOP-n queries by 
those with “big 

database” background



13

Histograms
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Why histograms? 
● The optimizer needs data about condition selectivity
● Research papers: selectivity data is much more important 

than cost model
– Confirms our experience.

● Histograms provide selectivity data
– The optimizer needs to be able to use it
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Histograms in MariaDB
● Available in MariaDB 10.0 (stable since March 2014)

– Also called “Engine Independent statistics”

● Have been useful in the real world
– “Make query plans better” according to the user

● Have some limitations
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Histogram storage in MariaDB
CREATE TABLE mysql.column_stats (
   db_name varchar(64) NOT NULL, 
   table_name varchar(64) NOT NULL, 
   column_name varchar(64) NOT NULL, 
   min_value varbinary(255) DEFAULT NULL, 
   max_value varbinary(255) DEFAULT NULL, 
   nulls_ratio decimal(12,4) DEFAULT NULL, 
   avg_length decimal(12,4) DEFAULT NULL, 
   avg_frequency decimal(12,4) DEFAULT NULL, 
   hist_size tinyint unsigned, 
   hist_type enum('SINGLE_PREC_HB','DOUBLE_PREC_HB'), 
   histogram varbinary(255), 
   PRIMARY KEY (db_name,table_name,column_name)
); 

● min_value and max_value are stored in full

● Bucket bounds are stored as fractions between min and max
– Compact but imprecise!
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Histogram collection in MariaDB
● Do a full table scan and collect values into Unique object

● Now we know the exact rows_in_table

● Enumerate sorted values
– Each (rows_in_table / n_buckets) there is a value that starts the 

next bucket.

– First and last values are min_val and max_val

✔ Predictable

✔ Deterministic

✔ Produces exact result

✗ Requires a full table scan

✗ Unique will store entire column 
population on disk

✗ For varchar(N) each value takes N chars! 
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Histograms in MySQL 8.0
● Are stored as JSON

– No apparent limit on size

● Two histogram types are supported
– “singleton” (list of values + frequencies)

– “equi-height”, with exact values for min/max bound

● Collection
– Full table scan with Bernoulli sampling (rolls the dice for each row)

– Uses a specified limited memory for collection
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Histograms in MySQL 8.0

{
  "last-updated": "2015-11-04 15:19:51.000000",
  "histogram-type": "equi-height",
  "null-values": 0.1, // Fraction of NULL values

  "buckets":
  [
    [
      "bar",  // Lower inclusive value
      "foo",  // Upper inclusive value
      0.001978728666831561, // Cumulative frequency

      10 // Number of distinct values in this bucket
    ],
    ...
  ]
}
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Histograms in PostgreSQL
● A histogram is both

– A list of Most-Common-Values (MCV) with frequencies

– A height-balanced histogram of values not in MCV
select * from pg_stats where tablename='pop1980';

tablename              | pop1980
attname                | firstname
null_frac              | 0
avg_width              | 7
n_distinct             | 9320
most_common_vals       | {Michael,Jennifer,Christopher,Jason,David,James,
                          Matthew,John,Joshua,Amanda}
most_common_freqs      | {0.0201067,0.0172667,0.0149067,0.0139,0.0124533,
                          0.01164,0.0109667,0.0107133,0.0106067,0.01028}
histogram_bounds       | {Aaliyah,Belinda,Christine,Elsie,Jaron,Kamia,
                          Lindsay,Natasha,Robin,Steven,Zuriel}
correlation            | 0.0066454
most_common_elems      |



21

Histograms are collected with sampling
● src/backend/commands/analyze.c, std_typanalyze() refers to
● "Random Sampling for Histogram Construction: How much is enough?” 

– Surajit Chaudhuri, Rajeev Motwani, Vivek Narasayya, ACM SIGMOD, 1998.

Histogram size
Rows in table (=10^6)

Max relative error in bin (=0.5)

Error probability (=0.01)

Random 
sample size

● 100 buckets = 30,000 rows sample
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Histogram collection in PostgreSQL
● The process: sample 30K rows from random locations in 

the table
– Single pass, a skip scan forward

– “Randomly chosen rows in randomly chosen blocks”

● Collection triggered by
– ANALYZE command
– Autovacuum seeing that number of modified tuples in 

the table exceeded a threshold
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Histograms summary
● MariaDB 10.2 has histograms

– Histogram collection is a full table scan + expensive processing

– Histograms are very compact (more than necessary?)

● MySQL 8.0 has larger histograms
– The optimizer is not as powerful when using them

– Histogram collection is a full scan + less expensive processing

● PostgreSQL does genuine sampling
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MariaDB 10.4
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Optimizer features in MariaDB 10.4 (1)
Completed

● MDEV-12387: Push conditions into materialized IN subqueries (Galina, Igor)
 

In progress
● MDEV-7486: Condition Pushdown from HAVING into WHERE (Galina, Igor)

● MDEV-15253: Change the optimizer defaults to include newer features (Varun, 
SergeiP)

● MDEV-11953: support of brackets (parentheses) in UNION/ EXCEPT/ 
INTERSECT operations (Igor, Sanja)

– Has an optimizer-related part
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Optimizer features in MariaDB 10.4 (2)

GSoC 2018 projects - In progress
● MDEV-6111: Optimizer trace (Zhzhzoo Zhang + SergeiP, Varun)

– Project is at risk due to student inactivity

● MDEV-12313: Improved Histograms (Teodor + Vicentiu)

GSoC 2017 projects

● MDEV-11107: Use table check constraints in optimizer (Igor + Galina)

– Basic variant works

– Unresolved issues with datatypes like date[time].
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Optimizer features in MariaDB 10.4 (3)
Planned
● MDEV-16188: Use in-memory PK filters built from range index scans 

(“Pre-filtering” for short) (Igor, Galina)

● MDEV-11588: Extended strict mode in GROUP BY (Varun) 

● MDEV-9062: ColumnStore integration: join pushdown to storage 
engines (Igor)

Planned 2

● MDEV-7487: Semi-join optimization for single-table UPDATE/DELETEs

– Not allocated to anyone ATM

● A few smaller that cannot be put into a stable release
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Thanks!

Discussion
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