
Sergei Petrunia <sergey@mariadb.com>
MariaDB Tampere Unconference

June 2018

MariaDB Optimizer
Current state, comparison with other branches,

development plans

2

Let’s review recent history
● MariaDB 10.2
● MariaDB 10.3
● MySQL 8.0
● MariaDB 10.4

3

Optimizer features in MariaDB 10.2

MariaDB 10.2 (Stable in May 2017)

● Window functions
● Common Table Expressions

– Non-recursive
– Recursive

● Condition pushdown into derived tables

4

Optimizer features in MariaDB 10.3

MariaDB 10.3 (Stable in May 2018)

● Split grouping
● Condition pushdown through window functions
● Table value constructors

● Transform [NOT] IN predicate with big list into subquery

5

Optimizer features in MySQL 8.0
MySQL 8.0 (Stable in May 2018, 5.7 was in Oct 2015)

● Histograms
● Common Table Expressions

– Recursive
– Non-recursive

● Invisible indexes

● Descending indexes

● More Oracle-style hints

6

Observations
● MySQL 8.0 re-implements a few big features

– Window functions

– Common Table Expressions
● Recursive
● Non-recursive

– Histograms

● MySQL still misses some of MariaDB features
● But it also has some extra features

7

Let’s compare common features

MariaDB vs MySQL

8

Non-recursive CTEs
● Another syntax for derived tables/VIEWs

– Optimizations for derived tables are applicable
● One exception: a CTE may be used multiple times

9

Non-recursive CTEs optimizations
Merge

Condition
pushdown

Lateral
derived

CTE
reuse

MariaDB 10.3 ✔ ✔ ✔(10.3) ✘

MS SQL Server ✔ ✔ ? ✘

PostgreSQL ✘ ✘ ✘ ✔

MySQL 8.0 ✔ ✘ ✘ ✔

 Merge and Condition Pushdown are the most important

 MariaDB supports them, like MS SQL.

 PostgreSQL’s approach is *weird*: “CTEs are optimization barriers”

 MySQL 8.0: “try merging, otherwise reuse”

10

Recursive CTEs
● The standard specifies how RCTE should be computed

– Both MySQL and MariaDB follow it.

● MariaDB: also supports non-standard CTE computation

– set standard_compliant_cte=off …

– Allows the user to do more

● Performance/optimizations

– Not aware of practically important performance-sensitive cases.

11

Window function optimizations
● Condition pushdown

● Reduce the number of sorting passes

● Streamed computation

● ORDER BY-like optimizations

12

Window Functions optimizations
Reuse

compatible
sorts

Streamed
computation

Condition
pushdown

ORDER BY
LIMIT-like

optimizations

MariaDB 10.3 ✔ ~✔ ✔ ✘

MS SQL Server ✔ ~✔ ✔ ✔

PostgreSQL ✔ ~✔ ✔ ✘

MySQL 8.0 ✔ ~✔ ✘ ✘

Everyone
has this since
it’s mandatory
for identical

sorts

Essential,
otherwise

O(N) computation
becomes O(N^2)

Very nice to
have for

analytic queries

Sometimes used for
TOP-n queries by
those with “big

database” background

13

Histograms

14

Why histograms?
● The optimizer needs data about condition selectivity
● Research papers: selectivity data is much more important

than cost model
– Confirms our experience.

● Histograms provide selectivity data
– The optimizer needs to be able to use it

15

Histograms in MariaDB
● Available in MariaDB 10.0 (stable since March 2014)

– Also called “Engine Independent statistics”

● Have been useful in the real world
– “Make query plans better” according to the user

● Have some limitations

16

Histogram storage in MariaDB
CREATE TABLE mysql.column_stats (
 db_name varchar(64) NOT NULL,
 table_name varchar(64) NOT NULL,
 column_name varchar(64) NOT NULL,
 min_value varbinary(255) DEFAULT NULL,
 max_value varbinary(255) DEFAULT NULL,
 nulls_ratio decimal(12,4) DEFAULT NULL,
 avg_length decimal(12,4) DEFAULT NULL,
 avg_frequency decimal(12,4) DEFAULT NULL,
 hist_size tinyint unsigned,
 hist_type enum('SINGLE_PREC_HB','DOUBLE_PREC_HB'),
 histogram varbinary(255),
 PRIMARY KEY (db_name,table_name,column_name)
);

● min_value and max_value are stored in full

● Bucket bounds are stored as fractions between min and max
– Compact but imprecise!

17

Histogram collection in MariaDB
● Do a full table scan and collect values into Unique object

● Now we know the exact rows_in_table

● Enumerate sorted values
– Each (rows_in_table / n_buckets) there is a value that starts the

next bucket.

– First and last values are min_val and max_val

✔ Predictable

✔ Deterministic

✔ Produces exact result

✗ Requires a full table scan

✗ Unique will store entire column
population on disk

✗ For varchar(N) each value takes N chars!

18

Histograms in MySQL 8.0
● Are stored as JSON

– No apparent limit on size

● Two histogram types are supported
– “singleton” (list of values + frequencies)

– “equi-height”, with exact values for min/max bound

● Collection
– Full table scan with Bernoulli sampling (rolls the dice for each row)

– Uses a specified limited memory for collection

19

Histograms in MySQL 8.0

{
 "last-updated": "2015-11-04 15:19:51.000000",
 "histogram-type": "equi-height",
 "null-values": 0.1, // Fraction of NULL values

 "buckets":
 [
 [
 "bar", // Lower inclusive value
 "foo", // Upper inclusive value
 0.001978728666831561, // Cumulative frequency

 10 // Number of distinct values in this bucket
],
 ...
]
}

20

Histograms in PostgreSQL
● A histogram is both

– A list of Most-Common-Values (MCV) with frequencies

– A height-balanced histogram of values not in MCV
select * from pg_stats where tablename='pop1980';

tablename | pop1980
attname | firstname
null_frac | 0
avg_width | 7
n_distinct | 9320
most_common_vals | {Michael,Jennifer,Christopher,Jason,David,James,
 Matthew,John,Joshua,Amanda}
most_common_freqs | {0.0201067,0.0172667,0.0149067,0.0139,0.0124533,
 0.01164,0.0109667,0.0107133,0.0106067,0.01028}
histogram_bounds | {Aaliyah,Belinda,Christine,Elsie,Jaron,Kamia,
 Lindsay,Natasha,Robin,Steven,Zuriel}
correlation | 0.0066454
most_common_elems |

21

Histograms are collected with sampling
● src/backend/commands/analyze.c, std_typanalyze() refers to
● "Random Sampling for Histogram Construction: How much is enough?”

– Surajit Chaudhuri, Rajeev Motwani, Vivek Narasayya, ACM SIGMOD, 1998.

Histogram size
Rows in table (=10^6)

Max relative error in bin (=0.5)

Error probability (=0.01)

Random
sample size

● 100 buckets = 30,000 rows sample

22

Histogram collection in PostgreSQL
● The process: sample 30K rows from random locations in

the table
– Single pass, a skip scan forward

– “Randomly chosen rows in randomly chosen blocks”

● Collection triggered by
– ANALYZE command
– Autovacuum seeing that number of modified tuples in

the table exceeded a threshold

23

Histograms summary
● MariaDB 10.2 has histograms

– Histogram collection is a full table scan + expensive processing

– Histograms are very compact (more than necessary?)

● MySQL 8.0 has larger histograms
– The optimizer is not as powerful when using them

– Histogram collection is a full scan + less expensive processing

● PostgreSQL does genuine sampling

24

MariaDB 10.4

25

Optimizer features in MariaDB 10.4 (1)
Completed

● MDEV-12387: Push conditions into materialized IN subqueries (Galina, Igor)

In progress
● MDEV-7486: Condition Pushdown from HAVING into WHERE (Galina, Igor)

● MDEV-15253: Change the optimizer defaults to include newer features (Varun,
SergeiP)

● MDEV-11953: support of brackets (parentheses) in UNION/ EXCEPT/
INTERSECT operations (Igor, Sanja)

– Has an optimizer-related part

26

Optimizer features in MariaDB 10.4 (2)

GSoC 2018 projects - In progress
● MDEV-6111: Optimizer trace (Zhzhzoo Zhang + SergeiP, Varun)

– Project is at risk due to student inactivity

● MDEV-12313: Improved Histograms (Teodor + Vicentiu)

GSoC 2017 projects

● MDEV-11107: Use table check constraints in optimizer (Igor + Galina)

– Basic variant works

– Unresolved issues with datatypes like date[time].

27

Optimizer features in MariaDB 10.4 (3)
Planned
● MDEV-16188: Use in-memory PK filters built from range index scans

(“Pre-filtering” for short) (Igor, Galina)

● MDEV-11588: Extended strict mode in GROUP BY (Varun)

● MDEV-9062: ColumnStore integration: join pushdown to storage
engines (Igor)

Planned 2

● MDEV-7487: Semi-join optimization for single-table UPDATE/DELETEs

– Not allocated to anyone ATM

● A few smaller that cannot be put into a stable release

28

Thanks!

Discussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

